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J. Phys. A: Math. Gen. 15 (1982) 3157-3165. Printed in Great Britain 

Spin-flip cross section from variational calculus: an 
application to w+-p scattering 

I A Sakmart$ and J H Wojtaszek0 
't Applied Mathematics Department, University of Western Ontario, London, Ontario, 
Canada 
3: Computer Sciences Corporation, Cape Canaveral, Florida, USA 

Received 7 April 1982 

Abstract. Numerical upper bounds are found for the total spin-flip cross section when 
the total cross section and the forward slope are known and the partial waves are unitary. 

1. Introduction 

In two previous articles (Sakmar 1981a, b) the method of application of variational 
calculus to scattering problems in particle physics (McDowell and Martin 1964, 
Einhorn and Blankenbecler 1971) was generalised to spin cases. In this paper we 
apply the method numerically to r+-p scattering. The application is intended as a 
demonstration of a rigorous method which takes the spin and unitarity fully into 
account. The bounds obtained should not be compared with experimental values but 
rather with what the maximised quantity would be without the variational calculus. 
The example at hand is the problem of maximising the spin-flip cross section, that is 
the angle integral of the square of the spin-flip amplitude, with the forward slope and 
total cross section as constraints. The unitarity of the partial waves gives additional 
inequality constraints. We had found the form of the partial waves in each of the 
four classes, defined according to the elasticity of the pair of amplitudes with the same 
I value (1, and L). They were: both elastic; both inelastic; fi+ elastic, fi- inelastic and 
fi+ inelastic, fi- elastic. 

The problem now is to choose partial waves from different classes to fit the 
constraints and maximise the spin-flip cross section. In § 2 we define and give the 
basic quantities to be used in the calculation. In 0 3 we construct from the existing 
phase shifts at a large number of energies the total cross section and the forward 
slope. In 0 4  we search for solutions using guidelines from the magnitudes of the 
constraints and conditions resulting from the variational method. Even though not 
all classes contribute to the maximum, we considered all of them to keep the approach 
as general as possible. Thus in addition to maxima saddle points were also found. 
Those saddle points can be called minimal, in the sense that only those second 
derivatives of the Lagrange function are positive over which we have no control. All 

Research supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada. 

0305-4470/82/103157 + 09$02.00 @ 1982 The Institute of Physics 3157 



3158 I A Sakmar and J H Wojtaszek 

other second derivatives are made negative by choosing the Lagrange parameters 
properly. In 0 5 we discuss our results and draw conclusions for further applications. 

2. Basic formulae 

The quantity to be maximised is the spin-flip cross section (TSF with uT the total cross 
section and dA/dtl,=o as constraints. A is the imaginary part of the scattering 
amplitude. To simplify the calculations we defined instead 

Ao= ( k 2 / 4 7 ) u T = C  [ ( I  + l ) ~ + +  la/-] 

Here k is the CM momentum, ai+, a/- ,  ri+, rl- the imaginary and real parts of the 
partial waves. 

The unitarity constraints are 

(4 )  

( 5 )  

2 2  U,=a/+-a,+-rl+ 3 0  

U /  = a,- - a,- - r , -  3 0. 2 2  

Note that we have defined G here as 4 of its definition in Sakmar (1981a, b) to make 
comparison of uSF and vT easier. We give below the definitions and formulae which 
will be needed in the application to the r+ -p  problem. We refer the reader who is 
interested in the properties of the four classes and the derivations of the forms of the 
partial wave amplitudes in these classes to Sakmar (1981a, b). 

We considered the following four classes. 
I+I-, Both fi+ and fi- are inelastic. This class was found to be empty. 
I'B-. fi+ inelastic, f i i  elastic. This class can contribute only to saddle points, 

because the second derivative of the Lagrange function is positive in some cases. In 
this class we had two possibilities: 

ri+ = rl- = 0 (6) 
1 

2 B  
a,+ = 1 --[a + [ ( I +  1)P1, (1) a,-= 1, 

r,+ = ri- = 0. (7) 
1 

2B 
a/+ = --[a + 1(1+ 1)P], ( 2 )  u,-=o,  

Here a and p are Lagrange parameters to be determined by fitting the constraints. 
B is defined as 

B = 21/(21+ 1). (8) 

I-B+. f,+ elastic, fi- inelastic. This class too can contribute only to saddle points, 
because the second derivative of the Lagrange function is positive in some cases. In 
this class we had two possibilities. 

rl+ = ri- = 0 
1 

2 0  
U [ -  = 1 --[a + I ( / +  11p1, (1) a,+= 1, 
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rl+ = rl- = 0. (10) 
1 

2 0  
al- = --[a + 1(1+ 1)p] ,  (2) Q+ =o,  

Here D is defined as 

D = 2(1+ 1)/(21+ 1). (11) 
B+B-. Both partial waves are elastic. In this class we had five possibilities: 

(1) ui+ = U l -  = 0, 

(2) a1+=0, ai- = 1, i j +  = rl- = 0 

(3) a1+= 1, U l -  = 0, rl+ = q- = 0 

(4) a!+= 1, al- = 1, ri+ = rl- = 0 

( 5 )  a/+, a[ - ,  rI+, rl- # 0. Their forms are given by equations (70)-(73) in Sakmar 
(1 98 1 a). 

In addition to these formulae we had given also the contribution of different forms 
of the partial wave amplitudes in different classes to Ao, S and G. We shall not repeat 
those formulae here. They are given in Sakmar (1981a) by equations (34), (35), (40), 

rl+ = ri- = 0 

(411, W, (51), (561, (57) and (74)-(76). 

a + 1(1+ 1)p. 
The combination which enters into all formulae is 

The unitarity and maximum condition impose on this combination lower and upper 
limits as functions of 1. As we shall see, these limits will help us both in finding the 
solutions and in completing the search for all solutions. 
Examples for these limits are: 

21(1+ 1) 
s a + 1 ( 1 +  1)p s - - 

(21 + 112 
41 

inI'B-2 -- 
21+1 

2i(f + 1) + 1(1+ 1)p <- 
(21 + 1)2 

4(f + inI-B+2 -- 
21+1 (13) 

in B'B-5 -2 s (Y + 1(1+ 1)@ s -2/(21+ 1). (14) 

These three regions are shown in figure 1. 

3. Input 

Our input is A .  and S. We calculate these two quantities from phase shifts. As 
reference we used the UCRL report (1970). In addition to A .  and S we also calculated 
G and E, which is in principle the elastic cross section. 

E = (k2 /4 r )ue '=C [(i+l)(a?+ +r?+)+ i (a? -  +r? - ) ] .  

As can be seen from our tables different phase shift sets are not normalised to the 
same total cross section. 'For this reason, as a meaningful quantity we also calculated 
G/Ao.  Finally, to get an idea about the elasticity we give E/Ao. Up to 1320MeV 
there are fewer fits in our reference than at higher energies. We selected a large 
number of energies and calculated for different groups' fits at all energies, the quantities 
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I 1 2 3 4 

Figure 1. /-dependent functions which determine the boundaries of the quantity a +  
l (1 -k  1)P. 

Ao, S, G, E, E / A o  and G/Ao. Examples of the resulting data at one energy are given 
in table 1. 

Table 1. Data calculated at one energy. 

n+-p 1543 MeV 
A0 s G E EIAo G/Ao 

Roper via Moorehouse 
Berkeley Boone 21 
Berkeley Path 1 
Berkeley Path 2 
Saclay 
CERN Kirsopp 
CERN Experimental 
CERN Theoretical 
Glasgow A (1540 MeV) 
Glasgow B (1540 MeV) 

0.8054 
0.7022 
0.7022 
0.6931 
0.7572 
0.6881 
0.7041 
0.7333 
0.7525 

3.6361 
1.9310 
1.9310 
2.5422 
1.6597 
1.5152 
1.5281 
1.9409 
2.0267 

0.0320 
0.0270 
0.0270 
0.0350 
0.0180 
0.0289 
0.0304 
0.0133 
0.0137 

0.3744 
0.3837 
0.3837 
0.3798 
0.4532 
0.3939 
0.3928 
0.4055 
0.4238 

0.4649 
0.5464 
0.5464 
0.5480 
0.5985 
0.5724 
0.5579 
0.5529 
0.5632 

0.0397 
0.0384 
0.0384 
0.0505 
0.0238 
0.0420 
0.0432 
0.0181 
0.0182 

4. Solutions 

The solutions were searched for in the following way. First of all we look at the 
numerical values of A.  and S. Then we insert for a/, and a/- their forms from different 
classes in (2) and (3). This in general restricts the 1 value because of the limits on 
a + l ( l  + l)p mentioned before. Then the limited number of possibilities are tried to 
fit A. and S. This gives the values of a and /3. Finally these a and p are used to 
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form a + 1(I+ l)p to check whether the unitarity and maximum conditions on this 
combination are satisfied. All cases which do not satisfy these conditions are elimi- 
nated. 

We first want to demonstrate this process with an example. Later we will give the 
solutions we have found. 

Consider r+-p  scattering at 1362 MeV. If we use Berkeley Boone 21 phase shifts 
we find 

Ao= 1.0221 S = 3.2851. 

If a pair of partial wave amplitudes were in the class B'B-4 for example, then we 
would have 

al+= 1 a lp  = 1 

and their contribution to S from equation (3) would be for the lowest I value (1 = 1) 

1.2[2+ 13 = 6. 

This already exceeds our S. Hence there can be no contribution from class B'B-4. 
As another example consider a more likely class, for instance I'B-2. In this class 

al+ = -(1/2B)[a + 1(1+ 1)p]  ui- = 0. 

Their contribution to S will be in equation (3) 

-1(1+ 1)( I+  1)[(2I+ 1)/4I][a + 1(1+ 1)p]. 
But the unitarity and maximum condition restrict [ a + I ( I + l ) @ ]  in I'B-2 by the 
relation (12). This means that 

-[a + /(I+ l)] > 0.44 for 13 1. 

Hence for I = 1 the contribution to S is greater than 

2 ~2 X ~ X  0.4444 = 1.32. 

For I = 2 the contribution to S is greater than 

3 x 3 x x 0.4747 = 7.4025. 

But this is larger than the given value of S. This shows that from this class not more 
than one partial wave (e.g. 1 = 1) can contribute. 

We now give some of the solutions we have found. With these solutions we 
calculate G and the solution which gives the largest G will be the one we are looking 
for. This G should be compared with the input A.  rather than the G obtained from 
phase shifts since we are using a very limited input. Moreover, the G values found 
from phase shifts are not consistent among themselves. In the computer program the 
eight classes of partial waves I+B-l, I'B-2, I-B+l, I-B+2, B'B-2, B+B-3, BIB-4 
and B'B-5 are called respectively 1, 2, 3, 4, 5 ,  6, 7 and 8. In addition the zero class 
is numbered 9. 

Thus 2 4 8 9 9 means that in a five partial wave search (I = 1 , .  . . , 5 )  the 1 = 1 
wave is taken from class I'B-2, the 1 = 2 wave from class I-B'2 and the I = 3 wave 
from class B+B-5. The I = 4 and I = 5 waves are zero. 

We did at most energies seven, and in some cases also eight wave searches. 
Actually, because of the restrictions imposed on the number of waves already discussed 
one does not need to go much higher. 
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Since the extrema depend critically on the input in the variational calculus, we 
searched for the solutions for different phase shift fits at the same energies. The fits 
we used are the following, together with the labels we used for them. 

Roger via Moorehouse RVM Berkeley Boone 21 BB 21 

Berkeley Path 1 BP 1 Saclay pion-nucleon phase shifts s 

CERN Kirsopp CK CERN theoretical fit CTF 

Glasgow solution A GSA. 

We give below some of our solutions. The one we are looking for is the largest for 
a given group’s fit. As discussed previously, because some Lagrange parameters are 
zero in some classes, we do not have control on certain second derivatives in such 
classes. These are the classes 1-4. In the remaining classes A and p are not zero and 
can be chosen to make second derivatives negative. These classes are 5-8. Hence 
the solutions which contain 1-4 are saddle points whereas the solutions with only 5-8 
are maxima. Among the maxima we have to choose the largest to find the upper bound. 

For a specified number of partial waves the computer program picks from nine 
different classes, partial waves with their characteristic forms in their respective classes; 
it then fits with these waves A.  and S and calculates CY and p which give the fit. Once 
a and p are found, it forms the numerical value of partial waves and checks it against 
the bounds imposed on partial waves by unitarity and maximum conditions. If the 
partial waves satisfy these conditions it writes out the values of CY and p and also 
calculates G. If they do not, it rejects it. In table 2 we give a summary of the results. 
(NS) means no solution, (M) means maximum and (sa) means saddle point. 

Table 2. Summary of the results. RVM phase shifts go only up to 1320 MeV. At  lower 
energies no solutions were found for RVM and CK. Above 1673 we checked only BPI 

and c r ~ .  

RVM BBZl BP1 S CK CTF GSA 

1320 NS Sa NS NS NS NS NS 

1362 M . S a  NS NS NS NS NS 

1390 M , S a  NS NS NS NS NS 
1470 M , S a  NS NS NS NS NS 

1542 M, Sa M, Sa M,  Sa M . S a  M , S a  M, Sa 
1673 M , S a  M , S a  Sa Sa M , S a  Sa 
1737 M. Sa M, Sa 
1821 M, Sa M, Sa 
1969 M, Sa M, Sa 

We also list the form of the solutions as well as the value of G in cases €or which 
solutions were found. Because of the large number of solutions we give only the 
largest maximum together with a saddle point. In a few cases there are no maxima 
but only saddle points (1673s, 1 6 7 2 s ~ ,  1680GS~).  In one case there is only one 
maximum (1672cT~).  The existence or the goodness of the bound depends critically 
on the input vzlues of A .  and S rather than the energy. Thus at 1362, 1390 and 
1470 MeV, of all the phase shift fits, only Berkeley Boone 21 has solutions. At large 
energies (1737, 1821, 1969 MeV) the number of solutions is very large. 
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1320 BB21 
Solutions 
1 899 999 

1362 BBZl 

8 899 999 
4 999 998 

1390 BBZl 
8 899 999 
4 989 999 

1470 BB21 
8 899 999 
4 899 999 

1543 BB21 
8 889 999 
4 899 999 

1543 BP1 

8 899 999 
4 999 989 

1 5 4 3 s  
8 899 999 
4 899 999 

1543 CK 
8 899 999 
4 888 888 

1543 c m  
8 899 999 
4 999 989 

1540 GSA 

8 899 999 
4 999 998 

1672 BB21 

88 899 999 
48 999 999 

1672 BPI 

8 889 999 
2 498 999 

1 6 7 3 s  
1 499 999 
1 899 999 

1672 CK 
1 899 999 
2 899 999 

1672 crF 
8 899 999 
4 899 999 

1680 GSA 

1 499 999 

A0 
1.1336 

CY 

2.8869 

1.0221 
-0.7004 
-2.6891 

0.9744 
-0.7232 
-2.3725 

0.7650 
-1.0361 
-1.2108 

0.8054 
- 1.4 109 
-0.3990 

0.7022 
-0.9117 
-1.8294 

0.6931 
-1.3075 
-0.7318 

0.7572 
-0.5727 
-1.1999 

0.7041 
-0.6637 
-1.8632 

0.7333 
-0.8180 
- 1.9296 

1.7599 
-0.7239 
- 1.9816 

1.7912 
-0.8225 
-0.4536 

1.6159 
2.0406 
2.6303 

1.6323 
2.6859 

-0.3141 

1.3281 
-0.7734 
-2.1680 

1.6516 
2.3726 

S G 
2.4038 0.1956 

P 
-0.8099 

3.2851 0.0998 

0.0124 

3.0689 0.0489 

0.0364 

2.4733 0.0125 
-0.1292 
-0.1001 

3.6361 0.0319 

-0.1752 

-0.1755 

-0.0468 
-0.1993 

1.9311 0.0270 
-0.1638 
-0.0040 

2.5422 0.0399 
-0.0769 
-0.1728 

1.6597 0.0180 
-0.2330 
-0.00002 

1.5282 0.0304 
-0.2187 
-0.0032 

1.9409 0.0123 
-0.1812 
-0.0012 

8.0290 0.0845 

0.1472 

9.0810 0.1686 

-0.1008 

-0.0875 
-0.0742 

4.8731 0.0426 
-0.4222 
-0.7170 

5.3859 0.1053 
-0.7103 
-0.2103 

5.0386 0.1068 
-0.1250 

0.1074 

5.8639 0.0745 
-0.5235 

E 
1.0505 

0.8495 

0.7792 

0.5421 

0.3744 

0.3837 

0.3798 

0.4532 

0.3928 

0.4055 

0.7546 

0.7853 

0.7655 

0.7769 

0.4960 

0.7989 

G 
0.6360 

0.8340 
0.6885 

0.7980 
0.6061 

0.6605 
0.4114 

0.7294 
0.5147 

0.5902 
0.3297 

0.6222 
0.3812 

0.5837 
0.3822 

0.5525 
0.3307 

0.6045 
0.3588 

1.4009 
1.1400 

1.4626 
0.4412 

0.5872 
0.9133 

1.0746 
0.6765 

1.0783 
0.8823 

0.7820 

EIAo 
0.9268 

0.8311 

0.7996 

0.7087 

0.4649 

0.5464 

0.5480 

0.5985 

0.5579 

0.5529 

0.4287 

0.4384 

0.4737 

0.4760 

0.3775 

0.4837 

GIAo 
0.1725 

Only saddle points 

0.0976 
Maximum 
Saddle point 

0.0502 

0.0164 

0.0397 

0.0384 

0.0575 

0.0237 

0.0863 

0.0180 

0.0480 

0.0942 

0.0264 
Only saddle points 

0.0645 
Only saddle points 

0.0804 

0.0451 
Only saddle points 
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Solutions 
1737 BPI 
8 889 999 
4 899 999 

1738 CTF 

8 889 999 
5 489 999 

1821 BPI  

8 888 999 
9 289 999 

1821 CTF 
8 889 999 
4 449 999 

1969 BPI  
5 888 999 
2 248 999 

1968 CTF 

5 888 999 
6 899 899 

A0 
a 

2.1666 
-0.4298 
-2.6657 

2.0317 
-0.4331 
-0.3618 

3.0659 
-0.6892 
-1.0117 

2.9602 
-0.5198 
-2.7242 

4.4637 
-0.0034 
-0.4554 

4.3304 
0.1004 

-0.2628 

s G 
P 

9.8898 0.15045 
-0.1241 

0.2962 

8.5660 0.1545 
-0.1281 
-0.1335 

21.5281 0.2095 
-0.0640 
-0.0575 

18.5002 0.2615 
-0.0864 

0.1817 

34.4504 0.2934 
-0.0955 
-0.0764 

31.0333 0.2983 
-0.1047 

-0.0513 

E 

1.0645 

1.0690 

1.3195 

1.5116 

2.0497 

1.9260 
3.0085 

EIAo CIAO 

0.4913 0.0695 
G 

1.6229 
1.4062 

0.5261 0.0760 
1.5103 
1.0105 

0.4304 0.0684 
2.4055 
1.3460 

0.5106 0.0883 
2.2642 
1.1756 

0.4592 0.0658 
3.1762 
1.1846 

0.4448 0.0689 

2.3318 

5. Discussion and conclusion 

Since the phase shifts normally fit the differential cross sections and polarisations, a 
comparison of the values of G or perhaps more meaningfully G/Ao, which takes 
normalisation into account, reveals a great difference between different phase shift 
sets. Thus at 1320MeV the largest and smallest values of G/Ao differ by 25%, at 
1443 MeV by 460% and at 1543 MeV by 180%. For S,  the corresponding values 
are 35, 5 5  and 140 per cent. This demonstrates the need for the measurement of the 
rotation parameters or theoretical methods to choose the best fits. To demonstrate 
the application of the method in the most general case, that is when partial waves 
from different classes can contribute, we searched for both the maxima and saddle 
points. We have already discussed how the solutions are searched for by taking partial 
waves from different classes. This may seem like a tedious job. However, because 
A. and S are finite and, for the energies we have investigated, small numbers, the 
number of partial waves from all classes except B'B-5 is limited and in most cases 
only one or two. This is because the partial waves are larger than 0.44 for 13 1. Only 
in B'B-5 can the partial waves be very small and their number large. However the 
effect of increasing the number of partial waves from B'B-5 can be followed, be it 
by individual calculations or by computer programming. One finds that if the partial 
waves with terminal 1 values from B'B-5 do not satisfy unitarity and maximum 
conditions, then when the I values are increased, the tail end of partial waves will 
still not satisfy these conditions. When only the class B+B-5 contributes, from the 
forms of G, A .  and S in this class one finds that the maximum of G is related to A0 

and S by G = 4[(2 - a)A0 -PSI. At some energies we could not find any solution at 
all. This is understandable, because in a variational problem in which the domain of 
the variables is restricted the maximum may lie outside this domain. 
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On the other hand, the existence and type of the solutions depend on the numerical 
values of A .  and S. Therefore experimental values of these quantities are critical for 
the solutions. It is only for convenience and demonstration of the method that we 
constructed A.  and S from phase shifts. In principle one should use the data directly. 
As a byproduct one finds of course, a great difference between various phase shifts. 

When at a given energy several solutions exist we have to take the largest maximum. 
It is to be noted that whenever the partial waves are in classes 5-8, and especially 
in 8, G is larger. The reason for this is that in this class there is an ambiguity in the 
sign of the real parts coming from the square root. For this reason in equation (1) 
one has to choose the worst combination for (rl+ - r l - )2 ,  that is rl+ and rl- are chosen 
with opposite signs and this makes this term large. Actually the forms of the partial 
waves in B'B-5 are found such that rl+ and rl- have opposite signs. At inelastic 
energies G can even be larger than E. However, we should realise that the input is 
only A .  and S,  and in the absence of the variational calculus the upper bound of G 
is Ao. Thus in all cases there is an improvement on information on G. 

We are in the process of applying this analysis to other spin-5-spin-0 processes 
which will be completed shortly. 
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